27 research outputs found

    Advanced Multicarrier Communication Techniques in Automotive Environment

    Get PDF
    Electronic systems in vehicles are used for advanced infotainment systems, control and automation systems, and safety critical systems. Due to increased importance of electronics in the modernization of vehicles, the size of cable harness is continuously increasing. Besides the DC wires a new cable needs to be wired for the addition of each feature in automotive environment. In addition to increased cost, the increased weight due to cabling also increases fuel consumption. Powerline communication (PLC) exploits AC or DC powerlines without need of additional wires. Successful PLC implementation for in-vehicle environment will ease the cable burden. Using DC power supply wires as the transmission medium will enhance the vehicular efficiency. For vehicular PLC implementation, the major issue to be addressed is that the effects of interference in the vehicular environment in general, and electric cars in particular, are strong enough to seriously impair the communication link performance. Besides interference, the frequency selectivity of the transmission channel also plays a critical role. Therefore, particularly robust modulation and signal processing techniques need to be developed for this scenario. To overcome these issues, a robust multicarrier modulation scheme is proposed in this thesis for automotive environments. The main components of this scheme include Orthogonal Frequency Division Multiplexing (OFDM) with low-order modulation and repetition coding. Furthermore, the Polynomial Cancellation Coding (PCC) method is adopted for suppressing the side-lobes in OFDM processing and effectively suppressing narrowband interferences

    Impulsive noise cancellation and channel estimation in power line communication systems

    Get PDF
    Power line communication (PLC) is considered as the most viable enabler of the smart grid. PLC exploits the power line infrastructure for data transmission and provides an economical communication backbone to support the requirements of smart grid applications. Though PLC brings a lot of benefits to the smart grid implementation, impairments such as frequency selective attenuation of the high-frequency communication signal, the presence of impulsive noise (IN) and the narrowband interference (NBI) from closely operating wireless communication systems, make the power line a hostile environament for reliable data transmission. Hence, the main objective of this dissertation is to design signal processing algorithms that are specifically tailored to overcome the inevitable impairments in the power line environment. First, we propose a novel IN mitigation scheme for PLC systems. The proposed scheme actively estimates the locations of IN samples and eliminates the effect of IN only from the contaminated samples of the received signal. By doing so, the typical problem encountered while mitigating the IN is avoided by using passive IN power suppression algorithms, where samples besides the ones containing the IN are also affected creating additional distortion in the received signal. Apart from the IN, the PLC transmission is also impaired by NBI. Exploiting the duality of the problem where the IN is impulsive in the time domain and the NBI is impulsive in the frequency domain, an extended IN mitigation algorithm is proposed in order to accurately estimate and effectively cancel both impairments from the received signal. The numerical validation of the proposed schemes shows improved BER performance of PLC systems in the presence of IN and NBI. Secondly, we pay attention to the problem of channel estimation in the power line environment. The presence of IN makes channel estimation challenging for PLC systems. To accurately estimate the channel, two maximumlikelihood (ML) channel estimators for PLC systems are proposed in this thesis. Both ML estimators exploit the estimated IN samples to determine the channel coefficients. Among the proposed channel estimators, one treats the estimated IN as a deterministic quantity, and the other assumes that the estimated IN is a random quantity. The performance of both estimators is analyzed and numerically evaluated to show the superiority of the proposed estimators in comparison to conventional channel estimation strategies in the presence of IN. Furthermore, between the two proposed estimators, the one that is based on the random approach outperforms the deterministic one in all typical PLC scenarios. However, the deterministic approach based estimator can perform consistent channel estimation regardless of the IN behavior with less computational effort and becomes an efficient channel estimation strategy in situations where high computational complexity cannot be afforded. Finally, we propose two ML algorithms to perform a precise IN support detection. The proposed algorithms perform a greedy search of the samples in the received signal that are contaminated by IN. To design such algorithms, statistics defined for deterministic and random ML channel estimators are exploited and two multiple hypothesis tests are built according to Bonferroni and Benjamini and Hochberg design criteria. Among the proposed estimators, the random ML-based approach outperforms the deterministic ML-based approach while detecting the IN support in typical power line environment. Hence, this thesis studies the power line environment for reliable data transmission to support smart grid. The proposed signal processing schemes are robust and allow PLC systems to effectively overcome the major impairments in an active electrical network.The efficient mitigation of IN and NBI and accurate estimation of channel enhances the applicability of PLC to support critical applications that are envisioned for the future electrical power grid.La comunicación a través de líneas de transmisión eléctricas (PLC) se considera uno de los habilitadores principales de la red eléctrica inteligente (smart grid). PLC explota la infraestructura de la red eléctrica para la transmisión de datos y proporciona una red troncal de comunicación económica para poder cumplir con los requisitos de las aplicaciones para smart grids. Si bien la tecnología PLC aporta muchos beneficios a la implementación de la smart grid, los impedimentos, como la atenuación selectiva en frecuencia de la señal de comunicación, la presencia de ruido impulsivo (IN) y las interferencias de banda estrecha (NBI) de los sistemas de comunicación inalámbrica de operación cercana, hacen que la red eléctrica sea un entorno hostil para la transmisión fiable de datos. En este contexto, el objetivo principal de esta tesis es diseñar algoritmos de procesado de señal que estén específicamente diseñados para superar los impedimentos inevitables en el entorno de la red eléctrica como son IN y NBI. Primeramente, proponemos un nuevo esquema de mitigación de IN en sistemas PLC. El esquema propuesto estima activamente las ubicaciones de las muestras de IN y elimina el efecto de IN solo en las muestras contaminadas de la señal recibida. Al hacerlo, el problema típico que se encuentra al mitigar el IN con técnicas tradicionales (donde también se ven afectadas otras muestras que contienen la IN, creando una distorsión adicional en la señal recibida) se puede evitar con la consiguiente mejora del rendimiento. Aparte de IN, los sistemas PLC también se ven afectados por el NBI. Aprovechando la dualidad del problema (el IN es impulsivo en el dominio del tiempo y el NBI es impulsivo en el dominio de la frecuencia), se propone un algoritmo de mitigación de IN ampliado para estimar con precisión y cancelar efectivamente ambas degradaciones de la señal recibida. La validación numérica de los esquemas propuestos muestra un mejor rendimiento en términos de tasa de error de bit (BER) en sistemas PLC con presencia de IN y NBI. En segundo lugar, prestamos atención al problema de la estimación de canal en entornos PLC. La presencia de IN hace que la estimación de canal sea un desafío para los sistemas PLC futuros. En esta tesis, se proponen dos estimadores de canal para sistemas PLC de máxima verosimilitud (ML) para sistemas PLC. Ambos estimadores ML explotan las muestras IN estimadas para determinar los coeficientes del canal. Entre los estimadores de canal propuestos, uno trata la IN estimada como una cantidad determinista, y la otra asume que la IN estimada es una cantidad aleatoria. El rendimiento de ambos estimadores se analiza y se evalúa numéricamente para mostrar la superioridad de los estimadores propuestos en comparación con las estrategias de estimación de canales convencionales en presencia de IN. Además, entre los dos estimadores propuestos, el que se basa en el enfoque aleatorio supera el determinista en escenarios PLC típicos. Sin embargo, el estimador basado en el enfoque determinista puede llevar a cabo una estimación de canal consistente independientemente del comportamiento de la IN con menos esfuerzo computacional y se convierte en una estrategia de estimación de canal eficiente en situaciones donde no es posible disponer de una alta complejidad computacionalPostprint (published version

    Positioning and Sensing in 6G: Gaps, Challenges, and Opportunities

    Get PDF
    Among the key differentiators of 6G compared to 5G will be the increased emphasis on radio-based positioning and sensing. These will be utilized not only for conventional location-aware services and for enhancing communication performance but also to support new use case families with extreme performance requirements. This article presents a unified vision from stakeholders across the value chain in terms of both opportunities and challenges for 6G positioning and sensing as well as use cases, performance requirements, and gap analysis. Combined, this motivates the technical advances in 6G and guides system design

    Incidental Intraoperative Diagnosis of Term Conjoined Twins: A Case Series

    Get PDF
    Conjoined twins (Siamese twins) represent the rarest form of twin pregnancy. Reported here are two rare cases of conjoined term twins presented to the department of Obstetrics and Gynaecology within 3 months. The first case, 32 years of gravida 6 parity 5 referred from periphery after full trial of labour following multi-organ dysfunction and term intrauterine dead twins. Intraoperatively it was dead conjoined thoraco-omphalopagus females. The patient died after 3 days following multiorgan dysfunction syndrome and disseminated intravascular coagulation. The second case, 22 years gravida 2 parity 1 also referred from periphery in second stage of labour with diagnosis of 39 weeks intrauterine dead twins with obstructed labour, delivered by caesarean with intraoperative conjoined dead females of thoracophagus type. Twins are high-risk pregnancy. This rare diagnosis with complications could have been prevented by regular antenatal checkups, ultrasonography performed by radiologists and early referral antenatally in labour along with multidisciplinary approach

    Design Considerations of Dedicated and Aerial 5G Networks for Enhanced Positioning Services

    Get PDF
    Dedicated and aerial fifth generation (5G) networks, here called 5G overlay networks, are envisaged to enhance existing positioning services, when combined with global navigation satellite systems (GNSS) and other sensors. There is a need for accurate and timely positioning in safety-critical automotive and aerial applications, such as advanced warning systems or in urban air mobility (UAM). Today, these high-accuracy demands can partially be satisfied by GNSS, though not in dense urban conditions or under GNSS threats (e.g. interference, jamming or spoofing). Temporary and on-demand 5G network deployments using ground and flying base stations (BSs) are indeed a novel solution to exploit hybrid GNSS, 5G and sensor algorithms for the provision of accurate three-dimensional (3D) position and motion information, especially for challenging urban and suburban scenarios. Thus, this paper first analyzes the positioning technologies available, including signals, positioning methods, algorithms and architectures. Then, design considerations of 5G overlay networks are discussed, by including simulation results on the 5G signal bandwidth, antenna array and network deployment.Peer reviewe

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Impulsive noise cancellation and channel estimation in power line communication systems

    No full text
    Power line communication (PLC) is considered as the most viable enabler of the smart grid. PLC exploits the power line infrastructure for data transmission and provides an economical communication backbone to support the requirements of smart grid applications. Though PLC brings a lot of benefits to the smart grid implementation, impairments such as frequency selective attenuation of the high-frequency communication signal, the presence of impulsive noise (IN) and the narrowband interference (NBI) from closely operating wireless communication systems, make the power line a hostile environament for reliable data transmission. Hence, the main objective of this dissertation is to design signal processing algorithms that are specifically tailored to overcome the inevitable impairments in the power line environment. First, we propose a novel IN mitigation scheme for PLC systems. The proposed scheme actively estimates the locations of IN samples and eliminates the effect of IN only from the contaminated samples of the received signal. By doing so, the typical problem encountered while mitigating the IN is avoided by using passive IN power suppression algorithms, where samples besides the ones containing the IN are also affected creating additional distortion in the received signal. Apart from the IN, the PLC transmission is also impaired by NBI. Exploiting the duality of the problem where the IN is impulsive in the time domain and the NBI is impulsive in the frequency domain, an extended IN mitigation algorithm is proposed in order to accurately estimate and effectively cancel both impairments from the received signal. The numerical validation of the proposed schemes shows improved BER performance of PLC systems in the presence of IN and NBI. Secondly, we pay attention to the problem of channel estimation in the power line environment. The presence of IN makes channel estimation challenging for PLC systems. To accurately estimate the channel, two maximumlikelihood (ML) channel estimators for PLC systems are proposed in this thesis. Both ML estimators exploit the estimated IN samples to determine the channel coefficients. Among the proposed channel estimators, one treats the estimated IN as a deterministic quantity, and the other assumes that the estimated IN is a random quantity. The performance of both estimators is analyzed and numerically evaluated to show the superiority of the proposed estimators in comparison to conventional channel estimation strategies in the presence of IN. Furthermore, between the two proposed estimators, the one that is based on the random approach outperforms the deterministic one in all typical PLC scenarios. However, the deterministic approach based estimator can perform consistent channel estimation regardless of the IN behavior with less computational effort and becomes an efficient channel estimation strategy in situations where high computational complexity cannot be afforded. Finally, we propose two ML algorithms to perform a precise IN support detection. The proposed algorithms perform a greedy search of the samples in the received signal that are contaminated by IN. To design such algorithms, statistics defined for deterministic and random ML channel estimators are exploited and two multiple hypothesis tests are built according to Bonferroni and Benjamini and Hochberg design criteria. Among the proposed estimators, the random ML-based approach outperforms the deterministic ML-based approach while detecting the IN support in typical power line environment. Hence, this thesis studies the power line environment for reliable data transmission to support smart grid. The proposed signal processing schemes are robust and allow PLC systems to effectively overcome the major impairments in an active electrical network.The efficient mitigation of IN and NBI and accurate estimation of channel enhances the applicability of PLC to support critical applications that are envisioned for the future electrical power grid.La comunicación a través de líneas de transmisión eléctricas (PLC) se considera uno de los habilitadores principales de la red eléctrica inteligente (smart grid). PLC explota la infraestructura de la red eléctrica para la transmisión de datos y proporciona una red troncal de comunicación económica para poder cumplir con los requisitos de las aplicaciones para smart grids. Si bien la tecnología PLC aporta muchos beneficios a la implementación de la smart grid, los impedimentos, como la atenuación selectiva en frecuencia de la señal de comunicación, la presencia de ruido impulsivo (IN) y las interferencias de banda estrecha (NBI) de los sistemas de comunicación inalámbrica de operación cercana, hacen que la red eléctrica sea un entorno hostil para la transmisión fiable de datos. En este contexto, el objetivo principal de esta tesis es diseñar algoritmos de procesado de señal que estén específicamente diseñados para superar los impedimentos inevitables en el entorno de la red eléctrica como son IN y NBI. Primeramente, proponemos un nuevo esquema de mitigación de IN en sistemas PLC. El esquema propuesto estima activamente las ubicaciones de las muestras de IN y elimina el efecto de IN solo en las muestras contaminadas de la señal recibida. Al hacerlo, el problema típico que se encuentra al mitigar el IN con técnicas tradicionales (donde también se ven afectadas otras muestras que contienen la IN, creando una distorsión adicional en la señal recibida) se puede evitar con la consiguiente mejora del rendimiento. Aparte de IN, los sistemas PLC también se ven afectados por el NBI. Aprovechando la dualidad del problema (el IN es impulsivo en el dominio del tiempo y el NBI es impulsivo en el dominio de la frecuencia), se propone un algoritmo de mitigación de IN ampliado para estimar con precisión y cancelar efectivamente ambas degradaciones de la señal recibida. La validación numérica de los esquemas propuestos muestra un mejor rendimiento en términos de tasa de error de bit (BER) en sistemas PLC con presencia de IN y NBI. En segundo lugar, prestamos atención al problema de la estimación de canal en entornos PLC. La presencia de IN hace que la estimación de canal sea un desafío para los sistemas PLC futuros. En esta tesis, se proponen dos estimadores de canal para sistemas PLC de máxima verosimilitud (ML) para sistemas PLC. Ambos estimadores ML explotan las muestras IN estimadas para determinar los coeficientes del canal. Entre los estimadores de canal propuestos, uno trata la IN estimada como una cantidad determinista, y la otra asume que la IN estimada es una cantidad aleatoria. El rendimiento de ambos estimadores se analiza y se evalúa numéricamente para mostrar la superioridad de los estimadores propuestos en comparación con las estrategias de estimación de canales convencionales en presencia de IN. Además, entre los dos estimadores propuestos, el que se basa en el enfoque aleatorio supera el determinista en escenarios PLC típicos. Sin embargo, el estimador basado en el enfoque determinista puede llevar a cabo una estimación de canal consistente independientemente del comportamiento de la IN con menos esfuerzo computacional y se convierte en una estrategia de estimación de canal eficiente en situaciones donde no es posible disponer de una alta complejidad computaciona

    Advanced Multicarrier Communication Techniques in Automotive Environment

    Get PDF
    Electronic systems in vehicles are used for advanced infotainment systems, control and automation systems, and safety critical systems. Due to increased importance of electronics in the modernization of vehicles, the size of cable harness is continuously increasing. Besides the DC wires a new cable needs to be wired for the addition of each feature in automotive environment. In addition to increased cost, the increased weight due to cabling also increases fuel consumption. Powerline communication (PLC) exploits AC or DC powerlines without need of additional wires. Successful PLC implementation for in-vehicle environment will ease the cable burden. Using DC power supply wires as the transmission medium will enhance the vehicular efficiency. For vehicular PLC implementation, the major issue to be addressed is that the effects of interference in the vehicular environment in general, and electric cars in particular, are strong enough to seriously impair the communication link performance. Besides interference, the frequency selectivity of the transmission channel also plays a critical role. Therefore, particularly robust modulation and signal processing techniques need to be developed for this scenario. To overcome these issues, a robust multicarrier modulation scheme is proposed in this thesis for automotive environments. The main components of this scheme include Orthogonal Frequency Division Multiplexing (OFDM) with low-order modulation and repetition coding. Furthermore, the Polynomial Cancellation Coding (PCC) method is adopted for suppressing the side-lobes in OFDM processing and effectively suppressing narrowband interferences

    Suitability of habitats in Nepal for <i>Dactylorhiza hatagirea</i> now and under predicted future changes in climate

    No full text
    Dactylorhiza hatagirea is a terrestrial orchid listed in Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and classified as threatened by International Union for Conservation of Nature (IUCN). It is endemic to the Hindu-Kush Himalayan region, distributed from Pakistan to China. The main threat to its existence is climate change and the associated change in the distribution of its suitable habitats to higher altitudes due to increasing temperature. It is therefore necessary to determine the habitats that are suitable for its survival and their expected distribution after the predicted changes in climate. To do this, we use Maxent modelling of the data for its 208 locations. We predict its distribution in 2050 and 2070 using four climate change models and two greenhouse gas concentration trajectories. This revealed severe losses of suitable habitat in Nepal, in which, under the worst scenario, there will be a 71–81% reduction the number of suitable locations for D. hatagirea by 2050 and 95–98% by 2070. Under the most favorable scenario, this reduction will be 65–85% by 2070. The intermediate greenhouse gas concentration trajectory surprisingly would result in a greater reduction by 2070 than the worst-case scenario. Our results provide important guidelines that local authorities interested in conserving this species could use to select areas that need to be protected now and in the future
    corecore